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The concentration of the lowest excited state of molecular
oxygen, O2(

1�g), generated by gas-phase photosensitization
with octafluoronaphthalene has been determined by electron par-
amagnetic resonance spectroscopy. The ground-state oxygen
molecule, O2(

3�g
�), was used as a quantitative standard. At

low pressures,�0:12Torr, about 30% of O2(
3�g

�) was convert-
ed to O2(

1�g) under steady-state conditions.

The lowest electronically excited singlet state of oxygen
molecule, O2(

1�g), has been a subject of study for many years,
with particular interest being taken in many photochemical and
biological problems.1–5 O2(

1�g) is an active intermediate in the
photooxygenation reactions. It is important to measure the con-
centration of O2(

1�g) for most applications requiring O2(
1�g) as

a reactive intermediate.6 There are several methods for detecting
O2(

1�g) in the gas phase and in condensed phases. The IR emis-
sion (a1�g! X3�g

� transition) spectroscopy is the most wide-
ly used technique to detect O2(

1�g).
7 However, since the

ground-state oxygen molecule, O2(
3�g

�), is recommended as
a quantitative standard, the most reliable technique for determin-
ing O2(

1�g) concentration has been electron paramagnetic reso-
nance (EPR) spectroscopy.8–11

In the present study, we have observed the EPR spectra of
O2(

1�g) in the gas phase. Oxygen in the
1�g state can be detect-

ed using the EPR technique, because O2(
1�g) is paramagnetic

owing to its orbital angular momentum. The first-order energy
for the interaction of the magnetic moment associated with the
total angular momentum J and an external magnetic field B
can be described by the following equation:8,12,13

E ¼
ð�þ 2�Þð�þ�Þ

JðJ þ 1Þ
�BBMJ ¼ gJ�BBMJ ð1Þ

Here,� and� are the orbital and spin angular momentum along
the molecular axis (Hund’s case a), respectively.

In the present study, we have observed the �MJ ¼ �1 tran-
sitions for the lowest rotational state of O2(

1�g), J ¼ 2. For this
state, J ¼ � ¼ 2 and gJ ¼ 2=3. The EPR absorption is expected
at �0:95T with a microwave frequency of �9GHz. These
�MJ ¼ �1 transitions are expected to split into a quartet of lines
by the off-diagonal Zeeman interaction with the higher rotational
state.8

Octafluoronaphthalene obtained from Aldrich was used
without further purification. The EPR spectra were measured
at room temperature by a JEOL JES-ME3XG X-band spectrom-
eter equipped with a homemade 100 kHz power amplifier and a
Varian V-4535 large sample access cylindrical cavity. For the
EPR measurements, conventional 100 kHz magnetic field mod-
ulation was used. The static magnetic filed was calibrated with

an Echo Electronics EFM-2000 proton NMR gauss meter. O2–
octafluoronaphthalene mixtures were passed through a 23-mm-
i.d. quartz tube located in the cavity. The excitations were car-
ried out using a Canrad–Hanovia 1 kW Xe–Hg arc lamp through
5 cm of distilled water and a Toshiba UV-D33S glass filter. The
gas pressure was monitored by an MKS Baratron capacitance
manometer.

O2(
1�g) molecules were generated from O2(

3�g
�) by ener-

gy transfer from the excited triplet states of the sensitizer mole-
cules. Octafluoronaphthalene was chosen as the sensitizer be-
cause it is relatively stable toward photooxidation. The
observed EPR spectra are shown in Figure 1.

As is clearly seen in Figure 1b, the characteristic nearly
symmetrical four-line EPR spectrum was observed during exci-
tation. The EPR signals of O2(

3�g
�) decreased immediately

with rise of O2(
1�g) signals on excitation. After shutting off

the exciting light, the O2(
3�g

�) signals rose and the O2(
1�g)

signals disappeared. The EPR spectrum of O2(
1�g) was ob-

served for the first time with a microwave discharge in O2 by
Falick et al.8 They estimated that under their conditions the size
of the O2(

1�g) signal indicated a concentration of 10% of the
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Figure 1. EPR spectra of O2(
1�g) and O2(

3�g
�) observed at

0.20 Torr with the microwave frequency of 8.873GHz. (a)
EPR spectrum of O2(

3�g
�) before excitation. (b) EPR spectrum

of O2(
1�g) and O2(

3�g
�) under excitation. Each spectrum is the

result of a single scan.
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ground state O2(
3�g

�). However, no spectra were shown in their
article.

In the late 1960s and early 1970s, EPR studies of O2(
1�g)

generated by photosensitization were performed.9–12,14 Howev-
er, to our knowledge, EPR studies have not been performed
for more than 30 years, Wasserman et al. observed the EPR spec-
tra of O2(

1�g) produced by photosensitization with naphthalene
derivatives in the gas phase.10 They estimated percentages of
O2(

3�g
�) converted to O2(

1�g) for many sensitizers. However,
they did not show any spectra in their article. To our knowledge,
the work by Kearns and his co-workers is the only literature to
show the EPR spectra of O2(

1�g) generated by photosensitiza-
tion.9 In their work, however, the observed EPR signal of
O2(

3�g
�) is much stronger than those of O2(

1�g) and it is diffi-
cult to estimate the O2(

1�g) concentration.
In the present work, we have estimated the concentration of

O2(
1�g) by using O2(

3�g
�) as a quantitative standard. The EPR

spectra were observed at 0.12 Torr, as shown in Figure 2. To
measure the O2(

1�g) concentration, the J ¼ 2, MJ ¼ 0 �1
transition was used. The concentration ratio of O2(

1�g) to
O2(

3�g
�) was determined from the double integrals of the

first-derivative EPR signals for the O2(
1�g) and O2(

3�g
�) lines

at 956.6 and 958.8mT, respectively, as follows.

½O2ð1�gÞ�
½O2ð3�gÞ�

¼
kð1�gÞ

RR
Sð1�gÞdBdB

kð3�g
�Þ

RR
Sð3�g

�ÞdBdB
ð2Þ

Here, S is the EPR signal and the factor kð1�gÞ=kð3�g
�Þ repre-

sents the ratio of O2(
3�g

�) and O2(
1�g) line strength. The con-

stant kð3�g
�Þ is easily obtained while kð1�gÞ is difficult to be ob-

tained.

At the lower O2 pressures, the excitation decreases the
O2(

3�g
�) intensity and shutting off the exciting light produces

the initial O2(
3�g

�) intensity. These results show that the loss
of O2(

3�g
�) on excitation is negligible compared to the amount

of produced O2(
1�g). We can safely assume that the amount of

O2 in some metastable state other than 1�g is negligible. The
second lowest excited state O2(

1�g
þ) might be produced but it

deactivates rapidly to O2(
1�g). Therefore, we estimated the con-

centration ratio directly without using the line strength factor.
We can see from Figure 2 that 30% of the O2(

3�g
�)was convert-

ed to O2(
1�g) under our conditions. The line strength factor

kð1�gÞ=kð3�g
�Þ can be estimated to be about 1.0 from Figure 2.

In conclusion, we have demonstrated that the EPR spectros-
copy is a reliable technique for determining the O2(

1�g) concen-
tration in the gas phase. Under our experimental conditions, the
steady-state O2(

1�g) concentration of 30% was obtained by the
photosensitization with octafluoronaphthalene. Further detailed
investigations including O2(

1�g) lifetime measurements are cur-
rently in progress.

The authors wish to express their thanks to Mr. Seiki Yagu-
chi, Mr. Kenichi Yamanaka, Mr. Tomohiko Maekawa, and Mr.
Kenji Yamada for their help in the preliminary work. They ex-
press their thanks to the Instrumental Analysis Center, Yokoha-
ma National University, for the use of the EPR spectrometer.
This work was supported by a Grant-in-Aid for Scientific Re-
search (No. 15550009) from the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT), Japan.

References
1 M. Mitsui, K. Takeda, Y. Kobori, A. Kawai, and K. Obi,

Chem. Phys. Lett., 262, 125 (1996).
2 J. Fujisawa, Y. Ohba, and S. Yamauchi, J. Phys. Chem. A,

101, 434 (1997).
3 S. N. Batchelor, J. Phys. Chem. B, 103, 6700 (1999).
4 A. Kawai, Appl. Magn. Reson., 23, 349 (2003).
5 C. Schweitzer and R. Schmidt, Chem. Rev., 103, 1685

(2003).
6 D. J. Benard and N. R. Pchelkin, Rev. Sci. Instrum., 49, 794

(1978).
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Figure 2. EPR spectra of O2(
1�g) and O2(

3�g
�) observed at

0.12 Torr with the microwave frequency of 8.873GHz. (a)
EPR spectrum of O2(

3�g
�) before excitation. (b) EPR spectrum

of O2(
1�g) and O2(

3�g
�) under excitation. Each spectrum is the

result of a single scan.

Chemistry Letters Vol.33, No.2 (2004) 153

Published on the web (Advance View) January 14, 2004; DOI 10.1246/cl.2004.152


